The Kelkar Education Trust's V G Vaze College of Arts, Science and Commerce (Autonomous)

Syllabus for M.Sc.-I.T.

CHOICE BASED (REVISED)

(June 2024 Onwards)

Programme: M.Sc. Semester III & IV

Subject : Information Technology

Semester III			
Course Code	Course Type	Course Title	Credits
VGVPSTMAI301	Major	Advanced AI	4
VGVPSTMAIP301	Major	Advanced AI Practical	2
VGVPSTMML301	Major	Machine Learning	4
VGVPSTMMLP301	Major	Machine Learning Practical	2
VGVPSTMSS301	Major	Storage as a Service	2
VGVPSTEL301		Natural Language Processing	4
VGVPSTELP301	Elective 1 (Any	Security Operations Center	4
	Elective 1 (Any	(PR)	
VGVPSTELP302	– One)	Server Virtualization on	4
		VMWare Platform (PR)	
VGVPSTOJT301	OJT/FP	OJT/FP	4
	•	Total Credits	22

Semester IV			
Course Code	Course Type	Course Title	Credits
VGVPSTMBC401	Major	Blockchain	4
VGVPSTMBCP401	Major	Blockchain Practical	2
VGVPSTMDL401	Major	Deep Learning	4
VGVPSTMDLP401	Major	Deep Learning Practical	2
VGVPSTELP401		Robotic Process Automation (PR)	4
VGVPSTELP402	- Elective 1 (Any One)	Cyber Forensics(PR)	4
VGVPSTELP403		Advanced IoT (PR)	4
VGVPSTRPP401	RP	Research Project	6
		Total Credits	22

M. Sc (Information Technology)		Semester – III	
Course Name: Advanced Artificial Intelligence		Course Code: VGVPSTMAI301	
Periods per week (1 Period is 60 minutes) 4		4	
Credits			4
		Hours	Marks
Evaluation System	Theory Examination	21/2	60
	Internal		40

Course Objective

- 1. To explore the applied branches of artificial intelligence.
- 2. To enable the learner to understand applications of artificial intelligence.
- 3. To enable the learner to solve the problem aligned with derived branches of artificial intelligence.
- 4. To enable the learner understand the basics of Intelligent Agent.
- 5. To enable the learner understand the concept of NLP.

Unit	Details	Lectures	
	Review of AI: History, foundation and Applications Expert System		
	and Applications: Phases in Building Expert System, Expert System		
Ι	Architecture, Expert System versus Traditional Systems, Rule based		
	Expert Systems, Blackboard Systems, Truth Maintenance System,		
	Application of Expert Systems, Shells and Tools.		
	Probability Theory: joint probability, conditional probability, Bayes's		
	theorem, probabilities in rules and facts of rule based system,		
	cumulative probabilities, rule based system and Bayesian method		
	Fuzzy Sets and Fuzzy Logic: Fuzzy Sets, Fuzzy set operations, Types		
	of Member ship Functions, Multivalued Logic, Fuzzy Logic, Linguistic		
	variables and Hedges, Fuzzy propositions, inference rules for fuzzy		
II	propositions, fuzzy systems, possibility theory and other enhancement	15	
	to Logic.		
	Machine Learning Paradigms: Machine Learning systems, supervised		
	and un-supervised learning, inductive learning, deductive learning,		
	clustering, support vector machines, cased based reasoning andlearning.		
	Artificial Neural Networks: Artificial Neural Networks, Single-Layer		
	feed forward networks, multi-layer feed- forward networks, radial basis		
	function networks, design issues of artificial neural networks and		
III	recurrent networks.	15	
	Evolutionary Computation: Soft computing, genetic algorithms,		
	genetic programming concepts, evolutionary programming, swarm		
	intelligence, ant colony paradigm, particle swarm optimization and		
	applications of evolutionary algorithms.		

	Intelligent Agents: Agents vs software programs, classification of			
	agents, working of an agent, single agent and multiagent systems,			
	performance evaluation, architecture, agent communication language,			
IV	applications.			
	Advanced Knowledge Representation Techniques: Conceptual			
	dependency theory, script structures, CYC theory, script structure, CYC			
	theory, case grammars, semantic web.			

Books a	Books and References:				
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Artificial Intelligence	Saroj Kaushik	Cengage	1 st	2019
2.	Artificial Intelligence: A	A. Russel, Peter		1 st	
	Modern Approach	Norvig			
3.	Artificial Intelligence	Elaine Rich, Kevin	Tata Mc-	3rd	
		Knight,Shivashankar	Grawhill		
		B. Nair			

Course Outcomes
After completion of course the learner will:
1. be able to understand the fundamentals concepts of expert system and its applications.
2 be able to use probability and concept of fuzzy sate for solving AI based problems

- 2. be able to use probability and concept of fuzzy sets for solving AI based problems.
- 3. be able to understand the applications of Machine Learning. The learner can also apply fuzzy system for solving problems.
- 4. be able to apply to understand the applications of genetic algorithms in different problems related to artificial intelligence.
- 5. A learner can use knowledge representation techniques in natural language processing.

M. Sc (Information Technology)		Semester –	Semester – III	
Course Name: Advanced Artificial Intelligence		Course Code	Course Code: VGVPSTMAIP301	
Practical				
Periods per week (1 Period is	120 minutes)	2		
Credits	Credits 2		2	
		Hours	Marks	
Evaluation System	Practical	3	100	
	Examination	5	100	

1.	Design an Expert system using AIML
	E.g: An expert system for responding the patient query for identifying the flu.
2.	Design a bot using AIML.
3.	Implement Bayes Theorem using Python.
4.	Implement Conditional Probability and joint probability using Python.
5.	Write a program for to implement Rule based system.
6.	Design a Fuzzy based application using Python / R.
7.	Write an application to simulate supervised and un-supervised learning model.
8.	Write an application to implement clustering algorithm.
9.	Write an application to implement support vector machine algorithm.
10.	Simulate artificial neural network model with both feedforward and backpropagation
	approach. [You can add some functionalities to enhance the model].
11.	Simulate genetic algorithm with suitable example using Python / R or any other
	platform.
12.	Design an Artificial Intelligence application to implement intelligent agents.
13.	Design an application to simulate language parser.
14.	Design an application to simulate semantic web.

M. Sc (Information Technology)		Semester – II	Semester – III	
Course Name: Machine Learning		Course Code: \	Course Code: VGVPSTMML301	
Periods per week (1 Period	Periods per week (1 Period is 60 minutes)		4	
Credits		4		
		Hours	Marks	
Evaluation System	Theory	21/2	60	
	Examination			
	Internal		40	

Course Objective

1. Understanding Human learning aspects.

- 2. Understanding primitives in learning process by computer.
- 3. Understanding nature of problems solved with Machine Learning
- 4. Understand the working of various models.
- 5. Understand trends in Machine Learning.

Unit	Details	Lectures		
	Introduction: Machine learning, Examples of Machine Learning			
	Problems, Structure of Learning, learning versus Designing, Training			
Ι	I versus Testing, Characteristics of Machine learning tasks, Predictive and			
	descriptive tasks, Machine learning Models: Geometric Models, Logical			
	Models, Probabilistic Models. Features: Feature types,			
	Feature Construction and Transformation, Feature Selection.			
	Classification: Binary Classification- Assessing Classification			
	performance, Class probability Estimation Assessing class probability			
	Estimates, Multiclass Classification.			
	Regression: Assessing performance of Regression- Error measures,			
	Overfitting- Catalysts for Overfitting, Case study of Polynomial			
п	Regression.	15		
	Theory of Generalization: Effective number of hypothesis, Bounding			
	the Growthfunction, VC Dimensions, Regularization theory.			
	Linear Models: Least Squares method, Multivariate LinearRegression,			
	Regularized Regression, Using Least Square regression for			
	Classification. Perceptron, Support Vector Machines, Soft Margin			
	SVM, Obtaining probabilities from Linear classifiers, Kernel methods			
	for non-Linearity.			
	Logic Based and Algebraic Model: Distance Based Models:	15		
	Neighbours and Examples, Nearest Neighbours Classification, Distance	15		
III				
	Rule Based Models: Rule learning for subgroup discovery, Association			
	rule mining.			
	Tree Based Models: Decision Trees, Ranking and Probability			
	estimation Trees, Regression trees, Clustering Trees.			

	Probabilistic Model:		
	Normal Distribution and Its Geometric Interpretations, Naïve Bayes		
IV	Classifier, Discriminative learning with Maximum likelihood,	15	
	Probabilistic Models with Hidden variables: Estimation-Maximization		
	Methods, Gaussian Mixtures, and Compression based Models.		
	Trends In Machine Learning : Model and Symbols- Bagging and		
	Boosting, Multitask learning, Online learning and Sequence Prediction,		
	Data Streams and Active Learning, Deep Learning, Reinforcement		
	Learning.		

Books a	Books and References:						
Sr. No.	Title	Author/s	Publisher	Edition	Year		
1.	Machine Learning: The Art and Science of Algorithms that Make Sense of Data	Peter Flach	Cambridge University Press		2012		
2.	Introduction to Statistical Machine Learning with Applications in R	Hastie, Tibshirani, Friedman	Springer	2nd	2012		
3.	Introduction to Machine Learning	Ethem Alpaydin	PHI	2nd	2013		

Course	Outcomes

After completion of the course, a learner should be able to:

- 1. Understand the key issues in Machine Learning and its associated applications in intelligent business and scientific computing.
- 2. Acquire the knowledge about classification and regression techniques where a learner will be able to explore his skill to generate data base knowledge using the prescribed techniques.
- 3. Understand and implement the techniques for extracting the knowledge using machine learning methods.
- 4. Achieve adequate perspectives of big data analytics in various applications like recommender systems, social media applications etc.
- 5. Understand the statistical approach related to machine learning. He will also Apply the algorithms to a real-world problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.

M. Sc (Information Technology)		Semester – III		
Course Name: Machine Learning Practical		Course Code: V	Course Code: VGVPSTMMLP301	
Periods per week (1 Period is 120 minutes)			2	
Credits		2		
		Hours	Marks	
Evaluation System	Practical Examination	3	100	

List o	f Practicals
1.	a. Design a simple machine learning model to train the training instances and test the
	same.
	b. Implement and demonstrate the FIND-S algorithm for finding the most specific
	hypothesis based on a given set of training data samples. Read the training data
	from a .CSV file
2.	a. Perform Data Loading, Feature selection (Principal Component analysis) and
	Feature Scoring and Ranking.
	b. For a given set of training data examples stored in a .CSV file, implement and
	demonstrate the Candidate-Elimination algorithm to output a description of the set
	of all hypotheses consistent with the training examples.
3.	a. Write a program to implement the naïve Bayesian classifier for a sample training
	data set stored as a .CSV file. Compute the accuracy of the classifier, considering
	few test data sets.
	b. Write a program to implement Decision Tree and Random forest with Prediction,
	Test Score and Confusion Matrix.
4.	a. For a given set of training data examples stored in a .CSV file implement Least
	Square Regression algorithm.
	b. For a given set of training data examples stored in a .CSV file implement Logistic
	Regression algorithm.
5.	a. Write a program to demonstrate the working of the decision tree based ID3
	algorithm. Use an appropriate data set for building the decision tree and apply this
	knowledge to classify a new sample.
	b. Write a program to implement k-Nearest Neighbour algorithm to classify the iris
	dataset.
6.	a. Implement the different Distance methods (Euclidean) with Prediction, Test Score
	and Confusion Matrix.
	b. Implement the classification model using clustering for the following techniques
	with K means clustering with Prediction, Test Score and Confusion Matrix.
7.	a. Implement the classification model using clustering for the following techniques
	with hierarchical clustering with Prediction, Test Score and Confusion Matrix

	b. Implement the Rule based method and test the same.
8.	a. Write a program to construct a Bayesian network considering medical data. Use
	this model to demonstrate the diagnosis of heart patients using standard Heart
	Disease Data Set.
	b. Implement the non-parametric Locally Weighted Regression algorithm in order to
	fit data points. Select appropriate data set for your experiment and draw graphs.
9.	a. Build an Artificial Neural Network by implementing the Backpropagation
	algorithm and test the same using appropriate data sets.
	b. Assuming a set of documents that need to be classified, use the naïve Bayesian
	Classifier model to perform this task.
10.	a. Write a program to demonstrate the working of the decision tree based ID3
	algorithm. Use an appropriate data set for building the decision tree and apply this
	knowledge to classify a new sample.
	b. Build an Artificial Neural Network by implementing the Backpropagation
	algorithm and test the same using appropriate data sets.
11.	Perform Text pre-processing, Text clustering, classification with Prediction, Test
	Score and Confusion Matrix

M. Sc (Information Technology)		Semester – III		
Course Name: Storage as a Service		Course Code: VGVPSTMSS301		
Periods per week (1 Period is 60	2			
Credits		2		
		Hours	Marks	
Evaluation SystemTheory Examination		21/2	60	
	Internal		40	

Course Objective
1. Understand the need for Storage Area Network and Data protection to satisfy the
information explosion requirements.
2. Study storage technologies: SAN, NAS, IP storage etc., which will bridge the gap
between the emerging trends in industry and academics.
3. To get an insight of Storage area network architecture, protocols and its
infrastructure.
4. To study and discuss the applications of SAN to fulfill the needs of the storage
management in the heterogeneous environment.
5 Charles and an demote and the mean second of Charles a Nature day

5. Study and understand the management of Storage Networks

Unit	Details	Lectures
	Introduction to Information Storage	
	Information Storage Data Types of Data Big Data Information	
	Storage Evolution of Storage Architecture Data Center Infrastructure	
	Core Elements of a Data Center Key Characteristics of a Data Center	
	Managing a Data Center Virtualization and Cloud Computing Data	
	Center Environment Application Database Management System	
	(DBMS) Host (Compute) Operating System Memory Virtualization	
	Device Driver 20 Volume Manager File System Compute	
	Virtualization Connectivity Physical Components of Connectivity	
Ι	Interface Protocols IDE/ATA and Serial ATA 28 SCSI and Serial	15
	SCSI Fiber Channel Internet Protocol (IP) Storage Disk Drive	
	Components Platter Spindle Read/Write Head Actuator Arm	
	Assembly Drive Controller Board Physical Disk Structure Zoned Bit	
	Recording Logical Block Addressing Disk Drive Performance Disk	
	Service Time Seek Time Rotational Latency Data Transfer Rate Disk	
	I/O Controller Utilization Host Access to Data Direct-Attached	
	Storage DAS Benefit and Limitations Storage Design Based on	
	Application Requirements and Disk Performance Disk Native	
	Command Queuing Introduction to Flash Drives Components and	
	Architecture of Flash Drives Features of Enterprise Flash Drives	
	Concept in Practice: VMware ESXi Data Protection: RAID RAID	
	Implementation Methods Software RAID Hardware RAID Array	
	Components RAID Techniques Striping Mirroring Parity RAID	
	Levels RAID 0 RAID 1 Nested RAID RAID 3 RAID 4 RAID 5	

	RAID 6 RAID Impact on Disk Performance Application IOPS and	
	RAID Configurations RAID Comparison Hot Spares	
	Intelligent Storage Systems Components of an Intelligent Storage	
	System Front End Cache Structure of Cache Read Operation with	
	Cache Write Operation with Cache Implementation Cache	
	Management Cache Data Protection Back End Physical Disk Storage	
	Provisioning Traditional Storage Provisioning LUN Expansion:	
	MetaLUN Virtual Storage Provisioning 82 Comparison between	
	Virtual and Traditional Storage Provisioning Use Cases for Thin and	
	Traditional LUNs LUNMasking Types of Intelligent Storage Systems	
	High-End StorageSystems Midrange Storage Systems	
	Fiber Channel Storage Area Networks Fiber Channel: Overview	
	The SAN and Its Evolution Components of FC SAN Node Ports	
	Cables and Connectors Contents Interconnect Devices SAN	
	Management Software FC Connectivity Point-to-Point	
	Fiber Channel Arbitrated Loop Fiber Channel Switched Fabric FC-	
	SW Transmission Switched Fabric Ports Fiber Channel Architecture	
	Fiber Channel Protocol Stack FC-4 Layer FC-2 Layer FC-1 Layer FC-	
	0 Layer Fiber Channel Addressing World Wide Names FC Frame	
	110. Structure and Organization of FC Data Flow Control BB_Credit	
	EE_Credit Classes of Service Fabric Services Switched Fabric Login	
	Types Zoning Types of Zoning FC SAN Topologies Mesh Topology	
	Core-Edge Fabric Benefits and Limitations of Core- Edge Fabric	
	Virtualization in SAN Block-level Storage Virtualization Virtual	
	SAN (VSAN)	
	IP SAN and FCoE iSCSI Components of iSCSI iSCSI Host	
	Connectivity iSCSI Topologies Native iSCSI Connectivity	
II	Bridged iSCSI Connectivity Combining FC and Native iSCSI	15
	Connectivity iSCSI Protocol Stack iSCSI PDU 6 iSCSI Discovery	
	iSCSI Names iSCSI Session iSCSI Command Sequencing FCIP FCIP	
	Protocol Stack FCIP Topology FCIP Performance and Security	
	FCoE I/O Consolidation Using FCoE Components of an FCoE	
	Network Converged Network Adapter Cables FCoE Switches FCoE	
	Frame Structure FCoE Frame Mapping FCoE Enabling Technologies	
	Priority-Based Flow Control (PFC) EnhancedTransmission Selection	
	(ETS) Congestion Notification (CN) Data Center Bridging Exchange	
	Protocol (DCBX)	
	Network-Attached Storage General-Purpose Servers versus NAS	
	Devices Benefits of NAS File Systems and Network File Sharing	
	Accessing a File System Network File Sharing Components of NAS	
	NAS I/O Operation NAS Implementations Unifi ed NAS Unifi ed	
	NAS Connectivity 164 Gateway NAS Gateway NAS Connectivity	
	Scale-Out NAS Scale-Out NAS Connectivity NAS File-Sharing	

Protocols NFS CIFS Factors Affecting NAS Performance File-Level Virtualization Object-Based and Unified Storage Object-Based Storage Devices Object-Based Storage Architecture Components of OSD Object Storage and Retrieval in OSD Benefits of Object-Based Storage Common Use Cases for Object-Based Storage Content-Addressed Storage CAS

Books and References:						
Sr. No.	Title	Author/s	Publisher	Edition	Year	
1.	Information Storage and Management: Storing, Managing, and Protecting Digital Information in Classic, Virtualized, and Cloud Environments	EMC	John Wiley & Sons	2nd	2012	

Course Outcomes

After completion of the course, a learner should be able to:

1. Understand different techniques of storage and RAID Technologies

2. Understand different intelligent storage technologies. Also, understand the benefits of Fibre Channel Storage Networks along with iSCSI.

3. Understand the architecture of NAS and deployment along with Object based and unified storage technologies. Also, the learner will be able to configure the storage devices tomaintain highest level of availability

4. Understand Replication and Migration techniques and implement them.

5. Understand Different techniques for managing and securing storage infrastructure.

M. Sc (Information Technology)		Semester – III		
Course Name: Natural Language Processing		Course Code: VGVPSTEL301		
Periods per week (1 Period is 60	4			
Credits		4		
		Hours	Marks	
Evaluation SystemTheory Examination		21/2	60	
	Internal		40	

Course Objective

- 1. The prime objective of this course is to introduce the learners to the field of Language Computing and its applications ranging from classical era to modern context.
- 2. To provide understanding of various NLP tasks and NLP abstractions such as Morphological analysis, POS tagging, concept of syntactic parsing, semantic analysis etc.
- 3. To provide knowledge of different approaches/algorithms for carrying out NLP tasks.
- 4. To highlight the concepts of Language grammar and grammar representation in Computational Linguistics.
- 5. To understand various parsing approaches.

Unit	Details	Lectures	
	Packets of thought		
	Natural language vs. programming language, The magic, Practical		
Ι	applications,Language through a computer's "eyes", word order and	15	
	grammar, A chatbot natural language pipeline		
	Language Processing and Python: Computing with Language, Closer		
	Look at Python: Texts as Lists of Words,		
	Computing with Language: Simple Statistics, Automatic Natural		
	Language Understanding		
	Accessing Text Corpora and Lexical Resources : Accessing Text		
	Corpora, Conditional Frequency Distributions, More Python: Reusing		
	Code, Lexical Resources,		
	WordNet		
	Processing Raw Text: Accessing Text from the Web and from Disk,		
	Strings: Text Processing at the Lowest Level, Text Processing with		
	Unicode, Regular Expressions for Detecting Word Patterns, Useful		
	Applications of Regular Expressions, Normalizing Text, Regular		
	Expressions for Tokenizing Text, Segmentation Formatting: From Lists		
	to Strings		

	Categorizing and Tagging Words: Using a Tagger, Tagged Corpora,	
	Mapping Words to Properties Using Python Dictionaries, Automatic	
	Tagging, N-Gram Tagging, Transformation-Based Tagging, How to	
II	Determine the Category of a Word	15
	Learning to Classify Text: Supervised Classification, Further	
	Examples of Supervised Classification, Evaluation, Decision Trees,	
	Naive Bayes Classifiers, Maximum Entropy Classifiers , Modeling	
	Linguistic Patterns,	
	Extracting Information from Text : Information Extraction,	
	Chunking, Developing and Evaluating Chunkers, Recursion in	
	Linguistic Structure, Named Entity Recognition, Relation Extraction	
	Analyzing Sentence Structure:	
	Some Grammatical Dilemmas, What's the Use of Syntax?, Context-Free	
	Grammar, Parsing with Context-Free Grammar, Dependencies and	
III	Dependency Grammar, Grammar Development	15
	Building Feature-Based Grammars:	
	Grammatical Features, Processing Feature Structures, Extending a	
	Feature-Based Grammar	
	Analyzing the Meaning of Sentences:	
	Natural Language Understanding, Propositional Logic, First-Order	
	Logic, The Semantics of English Sentences, Discourse Semantics	
	Math with words (TF-IDF vectors) : Bag of words, Vectorizing, Zipf's	
	Law, Topic modeling	
	Finding meaning in word counts (semantic analysis): From word	
IV	counts to topic scores, Latent semantic analysis, Singular value	15
	decomposition, Principal component analysis, Latent Dirichlet allocation	
	(LDiA), Distance and similarity, Steering with feedback, Topic vector	
	power	
	Information extraction (named entity extraction and question	
	answering): Named entities and relations, Regular patterns, Information	
	worth extracting, Extracting relationships (relations), In the real world	

	Practical:
1.	a. Install NLTK
	b. Convert the given text to speech
	c. Convert audio file Speech to Text.
2.	a. Study of various Corpus - Brown, Inaugural, Reuters, udhr with various
	methods like fields, raw, words, sents, categories,
	b. Create and use your own corpora(plaintext, categorical)
	c. Study Conditional frequency distributions
	Study of tagged corpora with methods like tagged_sents, tagged_words.
	d. Write a program to find the most frequent noun tags.
	e. Map Words to Properties Using Python Dictionaries
	f. Study DefaultTagger, Regular expression tagger, UnigramTagger
	g. Find different words from a given plain text without any space by comparing
	this text with a given corpus of words. Also find the score of words.
3.	a. Study of Wordnet Dictionary with methods as synsets, definitions, examples,
	antonyms.
	b. Study lemmas, hyponyms, hypernyms, entailments,
	c. Write a program using python to find synonym and antonym of word "active"
	using Wordnet
	d. Compare two nouns
	e. Handling stopword.
	Using nltk Adding or Removing Stop Words in NLTK's Default Stop Word List
	Using Gensim Adding and Removing Stop Words in Default Gensim Stop Words
	List
	Using Spacy Adding and Removing Stop Words in Default Spacy Stop Words List
4.	Text Tokenization
	a. Tokenization using Python's split() function
	b. Tokenization using Regular Expressions (RegEx)
	c. Tokenization using NLTK
	d. Tokenization using the spaCy library
	e. Tokenization using Keras
	f. Tokenization using Gensim
5.	Important NLP Libraries for Indian Languages and perform:
	a. word tokenization in Hindi
	b. Generate similar sentences from a given Hindi text input
	c. Identify the Indian language of a text
6.	Illustrate part of speech tagging.
	a. Part of speech Tagging and chunking of user defined text.
	b. Named Entity recognition of user defined text.
	c. Named Entity recognition with diagram using NLTK corpus – treebank
7.	a. Define grammer using nltk. Analyze a sentence using the same.
	b. Accept the input string with Regular expression of FA: 101+
	c. Accept the input string with Regular expression of FA: (a+b)*bba
	d. Implementation of Deductive Chart Parsing using context free grammar and a
	given sentence.
8	given sentence. Study PorterStemmer LancasterStemmer RegexpStemmer SnowballStemmer
8.	given sentence. Study PorterStemmer, LancasterStemmer, RegexpStemmer, SnowballStemmer Study WordNetLemmatizer

10	
	a. Speech tagging using spacy
	b. Speech tagging using nktl
	Statistical parsing:
	a. Usage of Give and Gave in the Penn Treebank sample
	b. probabilistic parser
	Malt parsing:
	Parse a sentence and draw a tree using malt parsing.
11	. a. Multiword Expressions in NLP
	b. Normalized Web Distance and Word Similarity
	c. Word Sense Disambiguation

Course Outcomes

After completion of the course, a learner should be able to:

- 1. Learners will get idea about know-hows, issues and challenge in Natural Language Processing and NLP applications and their relevance in the classical and modern context.
- 2. Learner will get understanding of Computational techniques and approaches for solving NLP problems and develop modules for NLP tasks and tools such as Morph Analyzer, POS tagger, Chunker, Parser, WSD tool etc.
- 3. Learners will also be introduced to various grammar formalisms, which they can apply in different fields of study.
- 4. Learners can take up project work or work in R&D firms working in NLP and its allied areas.
- 5. Learner will be able to understand applications in different sectors.

	and References:	-	1		1
Sr.	Title	Author/s	Publisher	Edition	Year
No.					
1.	Natural Language	Steven Bird,	O'Reilly	2 nd	2016
	ProcessingWith	Edward Loper	Media		
	Python				
2.	Applied Text	Benjamin	O'Reilly	1 st	2018
	Analysis with Python	Bengfort,			
		Rebecca			
		Bilbro, and			
		Tony Ojeda			
3.	Natural Language Processing	Hobson	Manning		2019
	in Action Understanding,	Lane, Cole	Publications		
	analyzing, and generating	Howard,			
	text with Python	Hannes Max			
		Hapke			
4.	Speech and Language	Martin, J. H.,	Pearson	2^{nd}	2013
	Processing	& Jurafsky,	Education		
		D.	India		
5.	Foundations of Statistical	Manning,	MIT	1 st	1997
	Natural Language Processing	Christopher	Press		
		and			
		Heinrich,			
		Schutze			
6.	Video Links				
	1. http://www.nptelvideos.in/20	12/11/natural-lan	guage-process	ing.html	

M. Sc (Information Technology)		Semester – III		
Course Name: Security Operations Centre Practical		Course Code: VGVPSTELP301		
Periods per week (1 Period is 120 minutes)		4		
Credits		4		
		Hours	Marks	
Evaluation System	Theory Examination	3	100	

List o	List of Practical :		
1.	Encrypting and Decrypting Data Using OpenSSL		
2.	Demonstrate the use of Snort and Firewall Rules		
3.	Demonstrate Extract an Executable from a PCAP		
4.	Demonstrate Analysis of DNS Traffic		
5.	Create your own syslog Server		
6.	Configure your Linux system to send syslog messages to a syslog server and Read		
	them		
7.	Install and Run Splunk on Linux		
8.	Install and Configure ELK on Linux		
9.	Install and Configure GrayLog on Linux		
10.	Demonstrate Conversion of Data into a Universal Format.		

M. Sc (Information Technology)		Semester – III		
Course Name: Server Virtualization on VMWare Platform Practical		Course Code: VGVPSTELP302		
Periods per week (1 Period is 120 minutes)		4		
Credits			4	
		Hours	Marks	
Evaluation System	Theory Examination	3	100	

List	List of Practicals				
1.	a. Configure and use vCenter Server Appliance.				
	b. Assign roles and permissions to Active Directory users to perform functions in				
	vCenter Server Appliance.				
2.	a. Create a standard switch and a port group.				
	b. Configure access to an iSCSI datastore.				
3.	a. Create and manage VMFS datastores.				
	b. Configure access to an NFS datastore.				
	c. Deploy a new virtual machine from a template and clone a virtual machine.				
4.	a. Create a content library to clone and deploy virtual machines.				
	b. Modify a virtual machine's hardware and add a raw LUN to a virtual machine.				
5.	Use vSphere vMotion and vSphere Storage vMotion to migrate virtual machines.				
6.	Perform virtual machine management tasks.				
7.	a. In vCenter Server, create and use resource pools on an ESXi host.				
	b. Use the system monitoring tools to reflect the CPU workload.				
8.	Use the vCenter Server Appliance alarm feature.				
9.	Use vSphere HA functionality.				
10.	a. Implement a vSphere DRS cluster.				
	b. Install, configure, and use vSphere Update Manager.				

M. Sc (Information Technology)		Semester – IV	
Course Name: Field Project Implementation and		Course Code: VGVPSTOJT301	
Viva			
Periods per week (1 Period is 120 minutes)		4	
Credits			6
		Hours	Marks
Evaluation System	Examination	3	100

The field project dissertation and Viva Voce details are given in Appendix 1.

SEMESTER IV

M. Sc (Information Technology)		Semester – IV	
Course Name: Blockchain		Course Code: VGVPSTMBC401	
Periods per week (1 Period is 60 minutes)		4	
Credits		4	
		Hours	Marks
Evaluation System	Theory	21/2	60
	Examination		
	Internal		40

Course Objective

- 1. To provide conceptual understanding of the function of Blockchain as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable.
- 2. To cover the technological underpinnings of blockchain operations as distributed data structures and decision-making systems, their functionality and different architecture types.
- 3. To provide a critical evaluation of existing "smart contract" capabilities and platforms, and examine their future directions, opportunities, risks and challenges.
- 4. To understand the solidity programming.
- 5. To understand the Blockchain application development.

Unit	Details	Lectures			
	Blockchain: Introduction, History, Centralised versus Decentralised systems, Layers of blockchain, Importance of blockchain, Blockchain uses and use cases.				
	Working of Blockchain: Blockchain foundation, Cryptography,	15			
	Game Theory, Computer Science Engineering, Properties of				
Ι	blockchain solutions, blockchain transactions, distributed consensus				
	mechanisms, Blockchain mechanisms, Scaling blockchain				
	Working of Bitcoin: Money, Bitcoin, Bitcoin blockchain, bitcoin				
	network, bitcoin scripts, Full Nodes and SVPs, Bitcoin wallets.				
	Ethereum: three parts of blockchain, Ether as currency and				
	commodity, Building trustless systems, Smart contracts, Ethereum				
	Virtual Machine, The Mist browser, Wallets as a Computing				
	Metaphor, The Bank Teller Metaphor, Breaking with Banking History,				
II	How Encryption Leads to Trust, System Requirements, Using Parity	15			
11	with Geth, Anonymity in Cryptocurrency, Central Bank Network,	15			
	Virtual Machines, EVM Applications, State Machines, Guts of the				
	EVM, Blocks, Mining's Place in the State Transition Function,				
	Renting Time on the EVM, Gas, Working with Gas, Accounts,				
	Transactions, and Messages, Transactions and Messages, Estimating				
	Gas Fees for Operations, Opcodes in the EVM. Solidity				
	Programming: Introduction, Global Banking Made Real,				

	Complementary Currency, Programming the EVM, Design Rationale,	
	Importance of Formal Proofs, Automated Proofs, Testing,	
	Formatting Solidity Files, Reading Code, Statements & Expressions	
	in Solidity, Value Types, Global Special Variables, Units, & Functions.	
	Hyperledger: Overview, Fabric, composer, installing hyperledger	
	fabric and composer, deploying, running the network, error	
	troubleshooting.	
	Smart Contracts and Tokens: EVM as Back End, Assets Backed by	
	Anything, Cryptocurrency Is a Measure of Time, Function of	
	Collectibles in Human Systems, Platforms for High-Value Digital	
	Collectibles, Tokens as Category of Smart Contract, Creating a	
	Token, Deploying the Contract, Playing with Contracts.	1.5
III	Mining Ether: Why? Ether's Source, Defining Mining, Difficulty,	15
	Self-Regulation, and the Race for Profit, How Proof of Work Helps	
	Regulate Block Time, DAG and Nonce, Faster Blocks, Stale Blocks,	
	Difficulties, Ancestry of Blocks and Transactions, Ethereum and	
	Bitcoin, Forking, Mining, Geth on Windows, Executing Commands	
	in the EVM via the Geth Console, Launching Geth with Flags, Mining	
	on the Testnet, GPU Mining Rigs, Mining on a Pool with Multiple	
	GPUs.	
	Cryptoecnomics: Introduction, Usefulness of cryptoeconomics, Speed	
	of blocks, Ether Issuance scheme, Common Attack Scenarios.	
	Blockchain Application Development: Decentralized Applications,	
	Blockchain Application Development, Interacting with the Bitcoin	
	Blockchain, Interacting Programmatically with Ethereum—Sending	
	Transactions, Creating a Smart Contract, Executing SmartContract	
	Functions, Public vs. Private Blockchains, DecentralizedApplication	
	Architecture, Building an Ethereum DApp: The DApp,Setting Up a	
IV	Private Ethereum Network, Creating the Smart Contract, Deploying the	15
	Smart Contract, Client Application,	
	DAppdeployment: Seven Ways to Think About Smart Contracts,	
	Dapp Contract Data Models, EVM back-end and front-end	
	communication, JSON-RPC, Web 3, JavaScript API, Using Meteor	
	with the EVM, Executing Contracts in the console, Recommendations	
	forPrototyping, Third-Party Deployment Libraries, Creating Private	
	Chains.	
	1	

Books and References:					
Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Beginning Blockchain	Bikramaditya	Apress		2018
	A Beginner's Guide to	Singhal,			
	Building Blockchain	Gautam Dhameja,			
	Solutions	Priyansu Sekhar			
		Panda			
2.	Introducing Ethereum and	Chris Dannen	Apress		2017
	Solidity				
3.	The Blockchain	Elad Elrom	Apress		2019
	Developer				
4.	Mastering Ethereum	Andreas M.	O'Reilly	First	2018
		Antonopoulos			
		Dr. Gavin Wood			
5.	Blockchain Enabled	Vikram Dhillon	Apress		2017
	Applications	David Metcalf			
		Max Hooper			

Course Outcomes

After completion of the course, a learner should be able to:

- 1. The learners would understand the structure of a blockchain and why/when it is better than a simple distributed database.
- 2. Analyze the incentive structure in a blockchain based system and critically assess its functions, benefits and vulnerabilities.
- 3. Evaluate the setting where a blockchain based structure may be applied, its potential and its limitations.
- 4. Understand what constitutes a "smart" contract, what are its legal implications and what it can and cannot do, now and in the near future.
- 5. Develop blockchain DApps.

M. Sc (Information Technology)		Semester – IV		
Course Name: Blockchain Practical		Course Code: V	Course Code: VGVPSTMBCP401	
Periods per week (1 Period is 120 minutes)		2		
Credits		2		
		Hours	Marks	
Evaluation System Practical		3	100	
	Examination			

List	of Practicals				
1.	Write the following programs for Blockchain in Python:				
	A simple client class that generates the private and public keys by using the in				
	Python RSA algorithm and test it.				
	b. A transaction class to send and receive money and test it.				
	c. Create multiple transactions and display them.				
	d. Create a blockchain, a genesis block and execute it.				
	e. Create a mining function and test it.				
	f. Add blocks to the miner and dump the blockchain.				
2.	Install and configure Go Ethereum and the Mist browser. Develop and test a sample				
	application.				
3.	Implement and demonstrate the use of the following in Solidity:				
	Variable, Operators, Loops, Decision Making, Strings, Arrays, Enums, Structs,				
	Mappings, Conversions, Ether Units, Special Variables.				
	b. Functions, Function Modifiers, View functions, Pure Functions, Fallback				
	Function, Function Overloading, Mathematical functions, Cryptographic functions.				
4.	Implement and demonstrate the use of the following in Solidity:				
	Withdrawal Pattern, Restricted Access.				
	b. Contracts, Inheritance, Constructors, Abstract Contracts, Interfaces.				
	c. Libraries, Assembly, Events, Error handling.				
5.	Install hyperledger fabric and composer. Deploy and execute the application.				
6.	Write a program to demonstrate mining of Ether.				
7.	Demonstrate the running of the blockchain node.				
8.	Demonstrate the use of Bitcoin Core API.				
9.	Create your own blockchain and demonstrate its use.				
10.	Build Dapps with angular.				

M. Sc (Information Technology)		Semester – IV	
Course Name: Deep Learning		Course Code: VGVPSTMDL401	
Periods per week (1 Period is 60 minutes)		4	
Credits		4	
		Hours	Marks
Evaluation System	Theory	21/2	60
	Examination		
	Internal		40

Course Objective

- 1. To present the mathematical, statistical and computational challenges of building neural networks.
- 2. To study the concepts of deep learning
- 3. To enable the learners to know deep learning techniques to support real-time applications.
- 4. To understand the deep learning research.
- 5. To learn deep generative models.

Unit	Details	Lectures
Ι	Applied Math and Machine Learning Basics: Linear Algebra:	
	Scalars, Vectors, Matrices and Tensors , Multiplying Matrices and	
	Vectors, Identity and Inverse Matrices, Linear Dependence and Span	
	, norms, special matrices and vectors, eigen decompositions.	15
	Numerical Computation: Overflow and under flow, poor	
	conditioning, Gradient Based Optimization, Constraint optimization.	
II	Deep Networks: Deep feedforward network, regularization	
	for deep learning, Optimization for Training deep models	15
	Convolutional Networks	
III	Sequence Modelling, Applications	15
	Deep Learning Research: Linear Factor Models, Autoencoders,	15
	representation learning	
IV	Approximate Inference, Deep Generative Models	15

Books a	Books and References:						
Sr. No.	Title	Author/s	Publisher	Edition	Year		
1.	Deep Learning	Ian Goodfellow,	An MIT	1st	2016		
		Yoshua Bengio,	Press				
		Aaron Courvile	book				
2.	Fundamentals of Deep	Nikhil Buduma	O'Reilly	1st	2017		
	Learning						
3.	Deep Learning: Methods	Deng & Yu	Now	1st	2013		
	and Applications		Publishers				
4.	Deep Learning CookBook	Douwe Osinga	O'Reilly	1st	2017		

Course Outcomes

After completion of the course, a learner should be able to:

1. Describes basics of mathematical foundation that will help the learner to understand the concepts of Deep Learning.

2. Understand and describe model of deep learning.

3. Design and implement various deep supervised learning architectures for text & image data.

4. Design and implement various deep learning models and architectures.

5. Apply various deep learning techniques to design efficient algorithms for realworld applications.

M. Sc (Information Technology)		Semester – IV		
Course Name: Deep Learning Practical		Course Code: VGVPSTMDLP401		
Periods per week (1 Period	Periods per week (1 Period is 120 minutes) 2		2	
Credits		2		
		Hours	Marks	
Evaluation System	Practical Examination	3	100	

List	of Practicals
1.	Performing matrix multiplication and finding eigen vectors and eigen values using
	TensorFlow
2.	Solving XOR problem using deep feed forward network.
3.	Implementing deep neural network for performing binary classification task.
4.	a Using deep feed forward network with two hidden layers for performing
	multiclass classification and predicting the class.
	b. Using a deep feed forward network with two hidden layers for performing
	classification and predicting the
	probability of class.
	c. Using a deep feed forward network with two hidden layers for performing linear
	regression and predicting values.
5.	a. Evaluating feed forward deep network for regression using KFold cross
	validation.
	b Evaluating feed forward deep network for multiclass Classification using KFold
	cross-validation.
6.	Implementing regularization to avoid overfitting in binary classification.
7.	Demonstrate recurrent neural network that learns to perform sequence analysis for
	stock price.
8.	Performing encoding and decoding of images using deep autoencoder.
9.	Implementation of convolutional neural network to predict numbers from number
	images
10.	Denoising of images using autoencoder.

M. Sc (Information Technology)		Semester – IV	
Course Name: Robotic Process Automation Practical		Course Code:	VGVPSTELP401
Periods per week (1 Period is 120 minutes)		4	
Credits		4	
		Hours	Marks
Evaluation System	Practical	3	100
	Examination		

List	t of Practicals
1.	a. Create a simple sequence based project.
	b. Create a flowchart-based project.
	c. Create an UiPath Robot which can empty a folder in Gmail solely on basis of
	recording.
2.	a. Automate UiPath Number Calculation (Subtraction, Multiplication, Division of
	numbers).
	b. Create an automation UiPath project using different types of variables (number,
	datetime, Boolean, generic, array, data table)
3.	a. Create an automation UiPath Project using decision statements.
	b. Create an automation UiPath Project using looping statements.
4.	a. Automate any process using basic recording.
	b. Automate any process using desktop recording.
	c. Automate any process using web recording.
5.	a. Consider an array of names. We have to find out how many of them start with the
	letter "a". Create an automation where the number of names starting with "a" is
	counted and the result is displayed.
6.	a. Create an application automating the read, write and append operation on excel
	file.
	b. Automate the process to extract data from an excel file into a data table and vice
	versa
7.	a. Implement the attach window activity.
	b. Find different controls using UiPath.
	c. Demonstrate the following activities in UiPath:
	i. Mouse (click, double click and hover)
	ii. Type into
	iii. Type Secure text
8.	a. Demonstrate the following events in UiPath:
	i. Element triggering event
	ii. Image triggering event
	iii. System Triggering Event
	b. Automate the following screen scraping methods using UiPath
	i. Full Test
	ii. Native
	iii. OCR
	c. Install and automate any process using UiPath with the following plug-ins:

	i. Java Plugin
	ii. Mail Plugin
	iii. PDF Plugin
	iv. Web Integration
	v. Excel Plugin
	vi. Word Plugin
	vii. Credential Management
9.	a. Automate the process of send mail event (on any email).
	b. Automate the process of launching an assistant bot on a keyboard event.
	c. Demonstrate the Exception handing in UiPath.
	d. Demonstrate the use of config files in UiPath.
10	a. Automate the process of logging and taking screenshots in UiPath.
	b. Automate any process using State Machine in UiPath.
	c. Demonstrate the use of publish utility.
	d. Create and provision Robot using Orchestrator.

M. Sc (Information Technology)		Semester – IV		
Course Name: Cyber Forensics Practical		Course Code: VC	Course Code: VGVPSTELP402	
Periods per week (1 Period is 120 minutes)		4	4	
Credits		4		
		Hours	Marks	
Evaluation System	Practical Examination	3	100	

List	List of Practical:		
1.	File System Analysis using The SleuthKit (Autospy, fsstat, istat, fls and img_stat)		
2.	a. Explore Windows forensic tools (OSForensics)		
	b. Forensics Investigation Using Encase		
	c. Using Mobile Forensics software tools		
	Exploring Mobiledit Forensics		
3.	Using Forensic Toolkit(FTK) & Writing report using FTK (AccessData FTK)		
4.	a. Using File Recovery Tools [FTK Imager] Creating Image		
	Recover Deleted files using Recuva, PC Inspector File Recovery, Recover My		
	Files, R Studio		
5.	a. Using Web attack detectiontools [Wireshark]		
	b. Using Log & Traffic Capturing & Analysis Tools [Wireshark]		
	c. Using Network Forensic Analysis Tool (NetworkMiner)		
	Using Network Traffic Analyser tool Iris		
6.	Dump Memory contents using PMdump		
7.	Using Data Acquisition Tools [ProDiscover Pro]		
8.	a. Using Steganography Tools [S-Tools]		
	Using Whitespace Stegnography tool SNOW		
9.	a. Performing Password Cracking [Cain & Abel]		
	Performing Sniffing [Cain & Abel]		
10.	a. Managing Remote Registry, Network Enumeration, Services, s. IDs		
	[Cain &Abel]		
	b. Scan Registry using RegScanner		
	Study Registry Viewer tool (Alien Registry Viewer)		

M. Sc (Information Technology) Semester – IV				
Course Name: Advanced IoT	Course Code: VGVPSTELP403			
Periods per week (1 Period is	4			
Credits		4		
		Hours	Marks	
Evaluation System	Practical	3	100	
	Examination			

List	of Practicals
1.	Loading Raspbian and Windows IoT Core on Raspberry Pi and executing
	applications on it using Python and node.js.
2.	Create a home automation system and control the devices remotely.
3.	Create the programs using the Microsoft Cognitive APIs for IoT.
4.	Create blockchain on Raspberry Pi and implement and test it. Authenticate IoT with
	blockchain.
5.	Implement Microservices on IoT device.
6.	Build your own IoT platform.
7.	Use IoT device with AWS.
8.	Send telemetry from a device to an IoT hub and read it with a service application.
9.	Use the Azure CLI and Azure portal to configure IoT Hub message routing.
10	Face Detection using IoT device. (Pi Camera or anything else).

M. Sc (Information Techno	logy)	Semester – IV		
Course Name: Research Project Viva	Implementation and	d Course Code: VGVPSTRPP401		
Periods per week (1 Period is 12	0 minutes)	4		
Credits		6		
		Hours Marks		
Evaluation System	Examination	3	100	

The project dissertation and Viva Voce details are given in Appendix 1.

Evaluation Scheme

1. Internal Evaluation (40 Marks)

The internal assessment marks shall be awarded as follows:

- 1. 30 marks (Any one of the following):
 - a. Written Test or
 - b. SWAYAM (Advanced Course) of minimum 20 hours and certification exam completed or
 - c. NPTEL (Advanced Course) of minimum 20 hours and certification exam completed or
 - d. Valid International Certifications (Prometric, Pearson, Certiport, Coursera, Udemy and the like)
 - e. One certification marks shall be awarded one course only. For four courses, the learners will have to complete four certifications.
- 2. 10 marks

The marks given out of 40 (30 in Semester 4) for publishing the research paper should be divided into four course and should awarded out of 10 in each of the four course.

Q1.	Attempt <u>any two</u> of the following:	16
a.		
b.		
c.		
d.		
Q2.	Attempt <u>any two</u> of the following:	14
a.		
b.		
c.		
d.		

i. Suggested format of Question paper of 30 marks for the written test.

- ii. 10 marks from every course coming to a total of 40 marks, shall be awarded on publishing of research paper in UGC approved / Other Journal with plagiarism less than 10%. The marks can be awarded as per the impact factor of the journal, quality of the paper, importance of the contents published, social value.
- 2. External Examination: (60 marks)(2 credit Course)

	All questions are compulsory	
Q1	(Based on Unit 1) Attempt <u>any two</u> of the following:	20
a.		
b.		
c.		
d.		

Q2	(Based on Unit 2) Attempt <u>any two</u> of the following:	20
Q3	(Based on whole syllabus) Attempt <u>any two</u> of the following:	20

3. External Examination: (60 marks)(4 credit Course)

	All questions are compulsory	
Q1	(Based on Unit 1) Attempt <u>any two</u> of the following:	20
a.		
b.		
c.		
d.		
Q2	(Based on Unit 2) Attempt <u>any two</u> of the following:	20
Q3	(Based on Unit 3) Attempt <u>any two</u> of the following:	20
Q4	(Based on Unit 4) Attempt <u>any two</u> of the following:	

4. Practical Evaluation (100 marks)

A Certified copy of hard-bound journal is essential to appear for the practical examination.

1.	Practical Question 1	40
2.	Practical Question 2	40
3.	Journal	10
4.	Viva Voce	10

OR

1.	Practical Question	80
2.	Journal	10
3.	Viva Voce	10

Project Documentation and Viva Voce Evaluation

The documentation should be checked for plagiarism and as per UGC guidelines, should be less than 10%.

1.	Documentation Report (Chapter 1 to 4)	20
2.	Innovation in the topic	10
3.	Documentation/Topic presentation and viva voce	20

Project Implementation and Viva Voce Evaluation

1.	Documentation Report (Chapter 5 to last)	20
2.	Implementation	10
3.	Relevance of the topic	10
4.	Viva Voce	10

Appendix – 1

Project Documentation and Viva-voce (Semester III) andProject Implementation and Viva-Voce (Semester IV)

Goals of the course Field/Research Project Documentation and Viva-Voce The learner should:

- be able to apply relevant knowledge and abilities, within the main field of study, to a given problem
- within given constraints, even with limited information, independently analyse and discuss complex inquiries/problems and handle larger problems on the advanced level within the main field of study
- > reflect on, evaluate and critically review one's own and others' scientific results
- be able to document and present one's own work with strict requirements on structure, format, and language usage
- be able to identify one's need for further knowledge and continuously develop one's own knowledge

To start the project:

- > Start thinking early in the programme about suitable projects.
- Read the instructions for the project.
- > Attend and listen to other learner's final oral presentations.
- > Look at the finished reports.
- > Talk to senior master learners.
- Attend possible information events (workshops / seminars / conferences etc.) about the related topics.

Application and approval:

- > Read all the detailed information about project.
- ➢ Finalise finding a place and supervisor.
- > Check with the coordinator about subject/project, place and supervisor.
- > Write the project proposal and plan along with the supervisor.
- > Fill out the application together with the supervisor.
- > Hand over the complete application, proposal and plan to the coordinator.
- > Get an acknowledgement and approval from the coordinator to start the project.

During the project:

- > Search, gather and read information and literature about the theory.
- > Document well the practical work and your results.
- > Take part in seminars and the running follow-ups/supervision.
- > Think early on about disposition and writing of the final report.
- > Discuss your thoughts with the supervisor and others.
- ▶ Read the SOP and the rest you need again.
- > Plan for and do the mid-term reporting to the coordinator/examiner.

- Do a mid-term report also at the work-place (can be a requirement in some workplaces).
- Write the first draft of the final report and rewrite it based on feedback from the supervisorand possibly others.
- > Plan for the final presentation of the report.

Finishing the project:

- > Finish the report and obtain an OK from the supervisor.
- > Ask the supervisor to send the certificate and feedback form to the coordinator.
- > Attend the pre-final oral presentation arranged by the Coordinator.
- Rewrite the final report again based on feedback from the opponents and possibly others.
- > Prepare a title page and a popular science summary for your report.
- > Send the completed final report to the coordinator (via plagiarism software)
- > Rewrite the report based on possible feedback from the coordinator.
- > Appear for the final exam.

Project Proposal/research plan

- The learner should spend the first 1-2 weeks writing a 1-2 pages project plan containing:
 - Short background of the project
 - Aims of the project
 - \circ Short description of methods that will be used
 - Estimated time schedule for the project
- > The research plan should be handed in to the supervisor and the coordinator.
- Writing the project plan will help you plan your project work and get you started in findinginformation and understanding of methods needed to perform the project.

Project Documentation

The documentation should contain:

- Introduction that should contain a technical and social (when possible) motivation of the project topic.
- Description of the problems/topics.
- Status of the research/knowledge in the field and literature review.
- Description of the methodology/approach. (The actual structure of the chapters heredepends on the topic of the documentation.)
- Results must always contain analyses of results and associated uncertainties.
- > Conclusions and proposals for the future work.
- > Appendices (when needed).
- Bibliography references and links.

KET's V. G. Vaze College(Autonomous) Board of Studies – Information Technology comprised of following members

Mrs. Pournima P Bhangale, Chairperson Mrs. Vandana Y Kadam, Member Mrs. Rakhee D Rane, Member Mrs. Nanda A Rupnar, Member Ms. Mohini Bhole, Member Ms. Pranali Pawar, Member Dr. Hiren Dand , VC nominee Professor (Dr.) Ajay S Patil, Subject Expert, North Maharashtra University Mr. Milind Narayan Kolambe, Subject Expert, Pune University Mr. Tejpal Khachane, Industry Expert Mr. Abhishek Ghorpade, Postgraduate meritorious alumnus

ownimaB

Mrs. Pournima P Bhangale Chairperson

Nound

Dr. Hiren Dand VC Nominee